Vertically Symmetric Alternating Sign Matrices and a Multivariate Laurent Polynomial Identity

نویسنده

  • Ilse Fischer
چکیده

In the talk I first explained how we came up with this conjecture in an attempt to prove a conjecture on a refined enumeration of vertically symmetric alternating sign matrices. An alternating sign matrix is a quadratic 0, 1,−1 matrix such that the non-zero entries alternate and sum up to 1 in each row and column. Next we give an example of such an object  0 0 1 0 0 1 0 −1 0 1 0 0 1 0 0 0 1 −1 1 0 0 0 1 0 0  ,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumeration of Symmetry Classes of Alternating Sign Matrices and Characters of Classical Groups

An alternating sign matrix is a square matrix with entries 1, 0 and −1 such that the sum of the entries in each row and each column is equal to 1 and the nonzero entries alternate in sign along each row and each column. To some of the symmetry classes of alternating sign matrices and their variations, G. Kuperberg associate square ice models with appropriate boundary conditions, and give determ...

متن کامل

On refined enumerations of totally symmetric self-complementary plane partitions II

In this paper we settle a weak version of a conjecture (i.e. Conjecture 6) by Mills, Robbins and Rumsey in the paper “Self-complementary totally symmetric plane partitions” J. Combin. Theory Ser. A 42, 277–292. In other words we show that the number of shifted plane partitions invariant under the involution γ is equal to the number of alternating sign matrices invariant under the vertical flip....

متن کامل

Symmetry Classes of Alternating-Sign Matrices under One Roof

In a previous article [20], we derived the alternating-sign matrix (ASM) theorem from the Izergin determinant [12, 17] for a partition function for square ice with domain wall boundary. Here we show that the same argument enumerates three other symmetry classes of alternating-sign matrices: VSASMs (vertically symmetric ASMs), even HTSASMs (half-turn-symmetric ASMs), and even QTSASMs (quartertur...

متن کامل

An operator formula for the number of halved monotone triangles with prescribed bottom row

Abstract. Monotone triangles are certain triangular arrays of integers, which correspond to n × n alternating sign matrices when prescribing (1, 2, . . . , n) as bottom row of the monotone triangle. In this article we define halved monotone triangles, a specialization of which correspond to vertically symmetric alternating sign matrices. We derive an operator formula for the number of halved mo...

متن کامل

Extreme Diagonally and Antidiagonally Symmetric Alternating Sign Matrices of Odd Order

For each α ∈ {0, 1,−1}, we count alternating sign matrices that are invariant under reflections in the diagonal and in the antidiagonal (DASASMs) of fixed odd order with a maximal number of α’s along the diagonal and the antidiagonal, as well as DASASMs of fixed odd order with a minimal number of 0’s along the diagonal and the antidiagonal. In these enumerations, we encounter product formulas t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015